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Outline
• Brief overview of the dynamics of 1D Disordered lattices: 

✓ The quartic disordered Klein-Gordon (DKG) model

✓ The disordered discrete nonlinear Schrödinger equation (DDNLS)

✓ Different dynamical regimes

• Symplectic Integrators – Tangent Map Method

• Numerical investigation of chaos

✓ Maximum Lyapunov Exponent (MLE): strength of chaos

✓ Deviation Vector Distributions (DVDs): mechanisms of chaotic 

spreading

✓ Frequency Map Analysis (FMA): characteristics of 

spatiotemporal evolution of chaos

✓ Generalized Alignment Index (GALI): localized vs. spreading 

chaos

• Chaotic behavior of the DKG and DDNLS models in 2 spatial 

dimensions



The 1D disordered Klein – Gordon model (1D DKG)
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with fixed boundary conditions u0=p0=uN+1=pN+1=0. Typically N=1000.

Parameters: W and the total energy E.

The 1D disordered discrete nonlinear Schrödinger 

equation (1D DDNLS)
We also consider the system:
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where   and  chosen  uniformly from   is the nonlinear parameter.l 
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Conserved quantities: The energy and the norm              of the wave packet.
2
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Linear case (neglecting the term ul
4/4) 

Ansatz: ul=Al exp(iωt). Normal modes (NMs) Aν,l - Eigenvalue problem: 

λAl = εlAl - (Al+1 + Al-1) with
2

l lλ = Wω -W - 2,    ε = W(ε - 1)



Distribution characterization (1D case)

We consider normalized energy distributions

and norm distributions
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measures the number of stronger excited sites in ξl. 

Single site P=1. Equipartition of energy P=N.

for the DDNLS system.
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for the DKG model, 



Strong and weak chaos regimes (1D DKG)

We consider compact initial 

wave packets of width L

[Flach et al. PRL (2009) –S. 

et al PRE (2009) – Laptyeva

et al., EPL (2010) – Bodyfelt

et al., PRE (2011)]

Time evolution

H= 0.01, 0.2, 0.75

W=4

Average over 1000 realizations!

α=1/2

α=1/3

𝜶(𝒍𝒐𝒈 𝒕) =
𝒅 𝒍𝒐𝒈 𝒎𝟐

𝒅 𝒍𝒐𝒈 𝒕



Maximum Lyapunov Exponent (MLE)

Roughly speaking, the MLE of a given orbit characterizes the mean exponential 

rate of divergence of trajectories surrounding it. 

Chaos: sensitive dependence on initial conditions.

Consider an orbit in the 2N-dimensional phase space with initial condition x(0) 

and an initial deviation vector (small perturbation) from it v(0).

Then the mean exponential rate of divergence is: 

MLE= 𝝀𝟏 = lim
𝒕→∞

𝚲 (𝒕) = lim
𝒕→∞

𝟏

𝒕
ln

𝒗(𝒕)

𝒗(𝟎)

λ1=0 → Regular motion (𝚲 ∝ 𝒕−𝟏)

λ1>0 → Chaotic motion



Symplectic integration
We apply the 2-part splitting integrator ABA864 [Blanes et al., Appl. 

Num. Math. (2013) – Senyange & S., EPJ ST (2018)] to the DKG model:
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and the 3-part splitting integrator ABC6
[SS] [S. et al., Phys. Let. A (2014) –

Gerlach et al., EPJ ST (2016) – Danieli et al., MinE (2019) ] to the DDNLS 

system:
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By using the so-called Tangent Map method we extend these symplectic

integration schemes in order to integrate simultaneously the variational

equations [S. & Gerlach, PRE (2010) – Gerlach & S., Discr. Cont. Dyn. Sys.

(2011) – Gerlach et al., IJBC (2012)].



2nd order integrators: Numerical results (1D DDNLS)

ABC2 τ=0.005

SS2 τ=0.02

DOP853 δ=10-16

SIFT2 τ=0.05

Er: relative energy 

error

Sr: relative norm 

error

Tc: CPU time (sec)

S. et al., Phys. Lett. A 

(2014)



Weak Chaos: 1D DKG and 1D DDNLS

1D

DKG

1D

DDNLS

Block excitation (L=37 sites) H1K=0.37, W=3

Single site excitation H1K=0.4, W=4

Block excitation (L=21 sites) H1K=0.21, W=4 

Block excitation (L=13 sites) H1K=0.26, W=5

Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)]

Block excitation (L=21 sites) β=0.04, W=4

Single site excitation β=1, W=4

Single site excitation β=0.6, W=3

Block excitation (L=21 sites) β=0.03, W=3

αΛ = -0.25 αΛ = -0.25

1D DKG model also studied in S. et al., PRL (2013)



Strong Chaos: 1D DKG and 1D DDNLS

1D

DKG

1D

DDNLS

Block excitation (L=83 sites) H1K=0.83, W=2

Block excitation (L=37 sites) H1K=0.37, W=3

Block excitation (L=83 sites) H1K=0.83, W=3

Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)]

Block excitation (L=21 sites) β=0.62, W=3.5

Block excitation (L=21 sites) β=0.5, W=3

Block excitation (L=21 sites) β=0.72, W=3.5

αΛ = -0.3 αΛ = -0.3



Deviation Vector Distributions (DVDs)

Deviation vector: 

v(t)=(δu1(t), δu2(t),…, δuN(t), δp1(t), δp2(t),…, δpN(t)) ( )
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DVD:

Energy

DVD

1D DKG

weak chaos

L=37 sites, 

H1K=0.37, 

W=3



DVDs: Weak and Strong Chaos

Energy DVD

W=3, L=37, H=0.37

Energy DVD

W=3, L=83, H=8.3

Weak chaos (1D DKG) Strong chaos (1D DKG)

Chaotic hot spots  meander through the system, supporting the homogeneity 

of chaos inside the wave packet.



Frequency Map Analysis (FMA)
Compute the fundamental frequencies, 𝒇𝟏 and 𝒇𝟐, of an observable related to

the evolution of an orbit in two successive time windows of the same length,

and check whether or not these frequencies change in time [Laskar, Icarus 

(1990) – Laskar et al., Physica D (1992) – Laskar, Physica D (1993) – Robutel & 

Laskar, Icarus (2000)].

Regular motion: The computed frequencies do not vary in time

Chaotic motion: The computed frequencies vary in time

For every lattice site l we compute the fundamental frequencies 𝒇𝟏𝒍 and 𝒇𝟐𝒍 for 

time windows of length 𝑻 = 𝟔 ∙ 𝟏𝟎𝟓 time units and evaluate the relative change 

of these two frequencies:

𝑫𝒍 =
𝒇𝟐𝒍 − 𝒇𝟏𝒍

𝒇𝟏𝒍

Regular motion: small 𝑫𝒍 values

Chaotic motion: large 𝑫𝒍 values



FMA: Weak and Strong Chaos
Weak chaos 

L=1, H=0.4, W=4, N=999

Strong chaos 

L=21, H=4.2, W=4, N=3499

𝐥𝐨𝐠𝟏𝟎 𝑫𝒍

Chaotic behavior appears at the central regions of the wave packet, where the energy 

density is relatively large. The chaotic component of the wave packet is more extended in 

the strong chaos case [S. et al., IJBC (2022)]



Frequency Locking (FL)
Accumulated percentages 𝑷𝑭𝑳 of sites with values in a particular 𝑭𝑳 range

Weak chaos Strong chaos 

The fraction of sites behaving chaotically is much larger in the strong chaos regime.

The percentage of strongly chaotic sites (having 𝑭𝑳𝒍 < 𝟎. 𝟒) is about 5 times larger for 

strong chaos.

For both spreading regimes, the fraction of highly chaotic oscillators (𝑭𝑳𝒍 < 𝟎. 𝟒) 

decreases in time, although the percentage of chaotic sites remains practically constant.



The Generalized Alignment Index (GALI)
In the case of an N degree of freedom Hamiltonian system we follow the

evolution of k deviation vectors with 2≤k≤2N, and define [S. et al., Physica D,

(2007)] the Generalized Alignment Index (GALI) of order k :

𝑮𝑨𝑳𝑰𝒌(𝒕) = ෝ𝒗𝟏(𝒕)  ∧  ෝ𝒗𝟐(𝒕) ∧  … ∧ ෝ𝒗𝒌(𝒕)

ෝ𝒗𝟏 𝒕 =
𝒗𝟏 𝒕

𝒗𝟏 𝒕
.where

Chaotic motion:

with λ1, λ2, …, λk being the first k largest Lyapunov exponents.

𝑮𝑨𝑳𝑰𝒌(𝒕)  ∝ 𝒆− (𝝀𝟏−𝝀𝟐)+(𝝀𝟏−𝝀𝟑)+...+(𝝀𝟏−𝝀𝒌) 𝒕

𝑮𝑨𝑳𝑰𝒌 𝒕 ∝ constant, if  𝟐 ≤ 𝒌 ≤ 𝑵

Regular motion: When the motion occurs on an N-dimensional torus [S. et

al., Eur. Phys. J. Sp. Top. (2008)]:

Here we consider GALI2 (k=2) which is equivalent to the Smaller Alignment

Index (SALI) [S, J. Phys A (2001)].



Regular vs. chaotic (localized or spreading) motion

Different disorder realizations can exhibit different behaviors.

Regular 

motion

Localized 

chaos

Spreading 

chaos

𝒕 = 𝟏𝟎𝟓, 𝟏𝟎𝟕, 𝟏𝟎𝟗

Single site excitations, L=1, for 

W=6, H=0.02 [Senyange & S., 

Physica D (2022)].

The GALI2 can identify chaos 

much more clearly than the MLE.

Regular 

motion

Localized 

chaos

Spreading 

chaos



Decreasing nonlinearity
Single site excitations Single mode excitations

𝑷𝑪: % of chaotic orbits

W=4, W=6

𝑷𝑪𝑳: % of localized chaos 𝑷𝑪𝑺: % of spreading chaos

Energy thresholds for transition to regular motion and to spreading chaos are lower for

single site excitations which permit mode interactions [Senyange & S., Physica D (2022)].

W=4 W=4W=6 W=6



The 2D DKG model
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2D: Deviation Vector Distributions (DVDs)
2D DDNLS: strong chaos

L=15, W=12, β=0.425, sl,m=1, H2D=1.32

Norm NormDVD DVD



Dimension-independent scaling 

between chaoticity and spreading

αΛ Weak Strong

1D -0.25 -0.30

2D -0.37 -0.46

αm Weak Strong

1D 1/3 1/2

2D 1/5 1/3

Second moment: Theoretical predictions 

verified by numerical computations
𝒎𝟐 ∝ 𝒕𝒂𝒎

Finite time mLCE: Numerical computations𝚲 ∝ 𝒕𝜶𝚲

For 1D and 2D systems there exists a uniform scaling between the wave packet’s

spreading and its degree of chaoticity indicating that nonlinear interactions of the

same nature are responsible for the chaotic wave-packet spreading in both cases.

ቤ
𝜦 𝒕

𝒎𝟐(𝒕)
𝟏𝑫

= ቤ
𝜦 𝒕

𝒎𝟐(𝒕)
𝟐𝑫

Weak chaos Strong chaos

𝒕−𝟎.𝟓𝟖 ≈ 𝒕−𝟎.𝟓𝟕 𝒕−𝟎.𝟖𝟎 ≈ 𝒕−𝟎.𝟕𝟗
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