Spatiotemporal chaos in disordered nonlinear lattices

Haris Skokos

Department of Mathematics and Applied Mathematics University of Cape Town Cape Town, South Africa

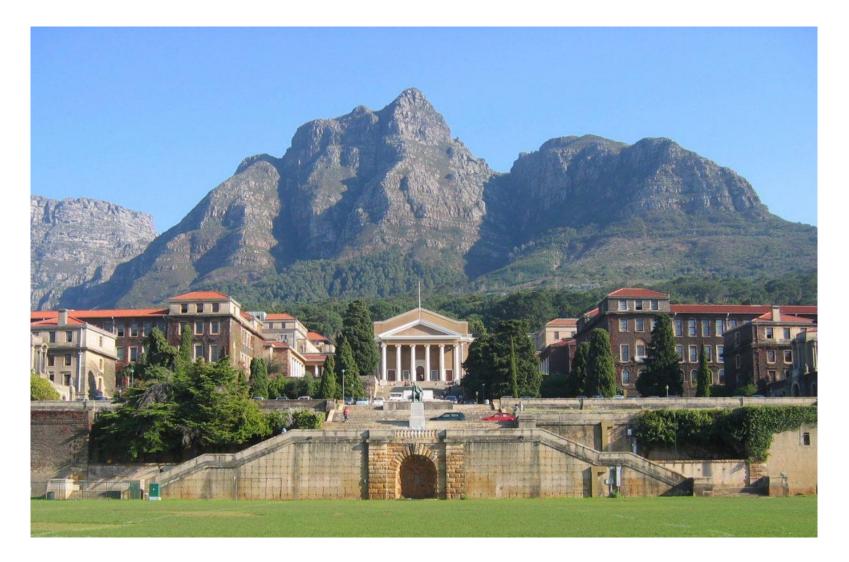
> E-mail: haris.skokos@uct.ac.za URL: http://math_research.uct.ac.za/~hskokos/

> > Scientific Workshop: 30 years MPI-PKS 7 September 2023, Dresden, Germany

All started back in 2008

University of Cape Town (UCT)

University of Cape Town (UCT)



Cape Town

Outline

- Brief overview of the dynamics of 1D Disordered lattices:
 - ✓ The quartic disordered Klein-Gordon (DKG) model
 - ✓ The disordered discrete nonlinear Schrödinger equation (DDNLS)
 - ✓ Different dynamical regimes
- Symplectic Integrators Tangent Map Method
- Numerical investigation of chaos
 - ✓ Maximum Lyapunov Exponent (MLE): strength of chaos
 - Deviation Vector Distributions (DVDs): mechanisms of chaotic spreading
 - Frequency Map Analysis (FMA): characteristics of spatiotemporal evolution of chaos
 - ✓ Generalized Alignment Index (GALI): localized vs. spreading chaos
- Chaotic behavior of the DKG and DDNLS models in 2 spatial dimensions

<u>The 1D disordered Klein – Gordon model (1D DKG)</u>

$$H_{IK} = \sum_{l=1}^{N} \frac{p_{l}^{2}}{2} + \frac{\tilde{\varepsilon}_{l}}{2} u_{l}^{2} + \frac{1}{4} u_{l}^{4} + \frac{1}{2W} (u_{l+1} - u_{l})^{2}$$

with fixed boundary conditions $u_0 = p_0 = u_{N+1} = p_{N+1} = 0$. Typically N=1000. Parameters: W and the total energy E. $\tilde{\varepsilon}_l$ chosen uniformly from $\left[\frac{1}{2}, \frac{3}{2}\right]$.

Linear case (neglecting the term $u_1^4/4$)

Ansatz: $u_l = A_l \exp(i\omega t)$. Normal modes (NMs) $A_{v,l}$ - Eigenvalue problem: $\lambda A_l = \varepsilon_l A_l - (A_{l+1} + A_{l-1})$ with $\lambda = W\omega^2 - W - 2$, $\varepsilon_l = W(\tilde{\varepsilon}_l - 1)$

The 1D disordered discrete nonlinear Schrödinger equation (1D DDNLS)

We also consider the system:

$$\boldsymbol{H}_{1D} = \sum_{l=1}^{N} \varepsilon_{l} \left| \boldsymbol{\psi}_{l} \right|^{2} + \frac{\boldsymbol{\beta}}{2} \left| \boldsymbol{\psi}_{l} \right|^{4} - \left(\boldsymbol{\psi}_{l+1} \boldsymbol{\psi}_{l}^{*} + \boldsymbol{\psi}_{l+1}^{*} \boldsymbol{\psi}_{l} \right)$$

where ε_l chosen uniformly from $\left|-\frac{W}{2},\frac{W}{2}\right|$ and β is the nonlinear parameter.

Conserved quantities: The energy and the norm $S = \sum_{l} |\psi_{l}|^{2}$ of the wave packet.

Distribution characterization (1D case)

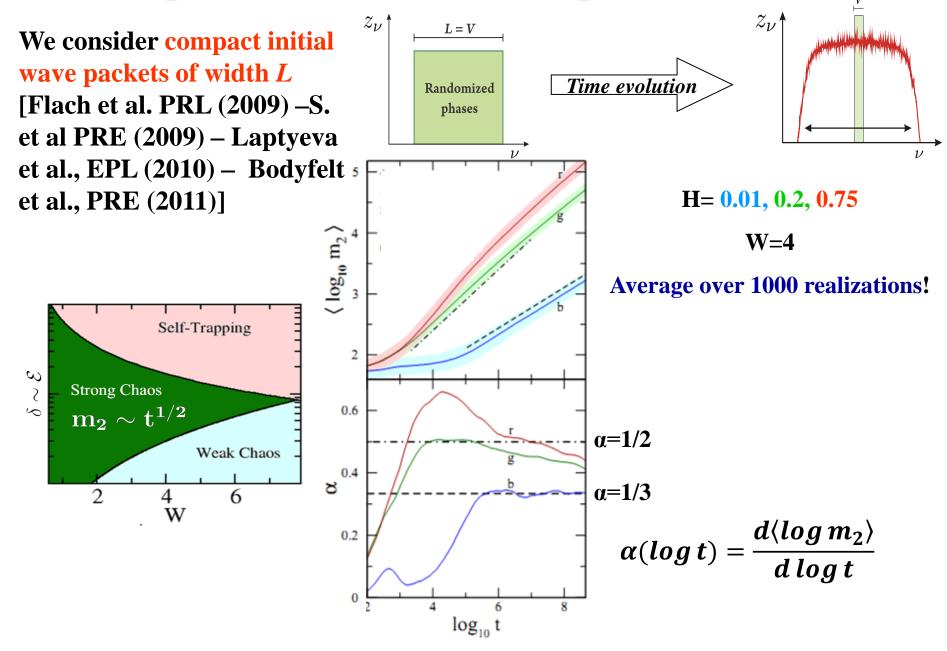
F

We consider normalized energy distributions
$$\xi_l \equiv \frac{E_l}{\sum_m E_m}$$

with $E_l = \frac{p_l^2}{2} + \frac{\tilde{\varepsilon}_l}{2} u_l^2 + \frac{1}{4} u_l^4 + \frac{1}{4W} (u_{l+1} - u_l)^2$ for the DKG model,
and norm distributions $\xi_l \equiv \frac{|\psi_l|^2}{\sum_m |\psi_m|^2}$ for the DDNLS system.
Second moment: $m_2 = \sum_{l=1}^N (l - \bar{l})^2 \xi_l$ with $\bar{l} = \sum_{l=1}^N l \xi_l$
Participation number: $P = \frac{1}{\sum_{l=1}^N \xi_l^2}$

measures the number of stronger excited sites in ξ_l . Single site *P*=1. Equipartition of energy *P*=*N*.

Strong and weak chaos regimes (1D DKG)



Maximum Lyapunov Exponent (MLE)

Chaos: sensitive dependence on initial conditions.

Roughly speaking, the MLE of a given orbit characterizes the mean exponential rate of divergence of trajectories surrounding it.

Consider an orbit in the 2N-dimensional phase space with initial condition x(0) and an initial deviation vector (small perturbation) from it v(0). Then the mean exponential rate of divergence is:

$$\mathbf{MLE} = \lambda_{1} = \lim_{t \to \infty} \Lambda(t) = \lim_{t \to \infty} \frac{1}{t} \ln \frac{\|v(t)\|}{\|v(0)\|}$$

$$\lambda_{1} = \mathbf{0} \rightarrow \text{Regular motion } (\Lambda \propto t^{-1})$$

$$\lambda_{1} > \mathbf{0} \rightarrow \text{Chaotic motion}$$

$$\mathbf{10^{-3}}$$

$$\mathbf{10^{-3}}$$

$$\mathbf{10^{-3}}$$

$$\mathbf{10^{-3}}$$

$$\mathbf{10^{-3}}$$

$$\mathbf{10^{-3}}$$

Figure 5.7. Behavior of σ_n at the intermediate energy E = 0.125 for initial points taken in the ordered (curves 1-3) or stochastic (curves 4-6) regions (after Benettin *et al.*, 1976).

nτ

Symplectic integration

We apply the 2-part splitting integrator ABA864 [Blanes et al., Appl. Num. Math. (2013) – Senyange & S., EPJ ST (2018)] to the DKG model:

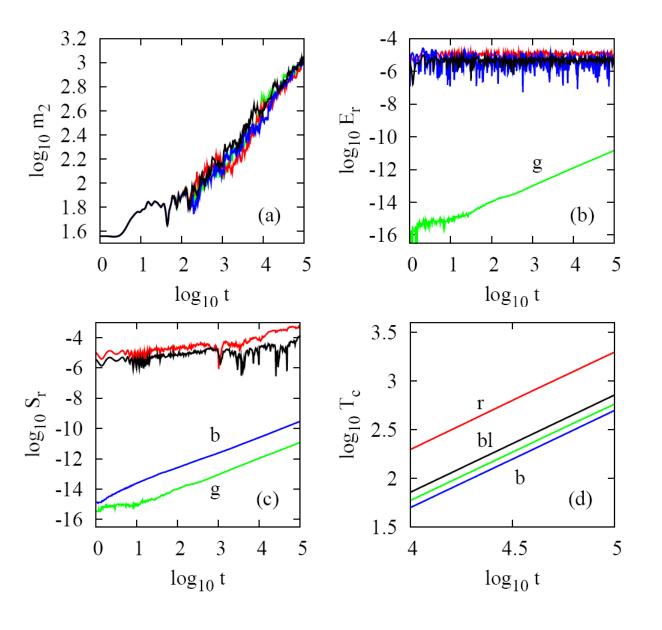
$$H_{IK} = \sum_{l=1}^{N} \left(\frac{p_l^2}{2} + \frac{\tilde{\varepsilon}_l}{2} u_l^2 + \frac{1}{4} u_l^4 + \frac{1}{2W} (u_{l+1} - u_l)^2 \right)$$

and the 3-part splitting integrator ABC⁶_[SS] [S. et al., Phys. Let. A (2014) – Gerlach et al., EPJ ST (2016) – Danieli et al., MinE (2019)] to the DDNLS system:

$$\hat{H}_{1D} = \sum_{l} \varepsilon_{l} |\psi_{l}|^{2} + \frac{\beta}{2} |\psi_{l}|^{4} - (\psi_{l+1} \psi_{l}^{*} + \psi_{l+1}^{*} \psi_{l}), \quad \psi_{l} = \frac{1}{\sqrt{2}} (u_{l} + ip_{l})$$
$$H_{1D} = \sum_{l} \left(\frac{\varepsilon_{l}}{2} (u_{l}^{2} + p_{l}^{2}) + \frac{\beta}{8} (u_{l}^{2} + p_{l}^{2})^{2} - u_{n} u_{n+1} - p_{n} p_{n+1} \right)$$

By using the so-called Tangent Map method we extend these symplectic integration schemes in order to integrate simultaneously the variational equations [S. & Gerlach, PRE (2010) – Gerlach & S., Discr. Cont. Dyn. Sys. (2011) – Gerlach et al., IJBC (2012)].

2nd order integrators: Numerical results (1D DDNLS)

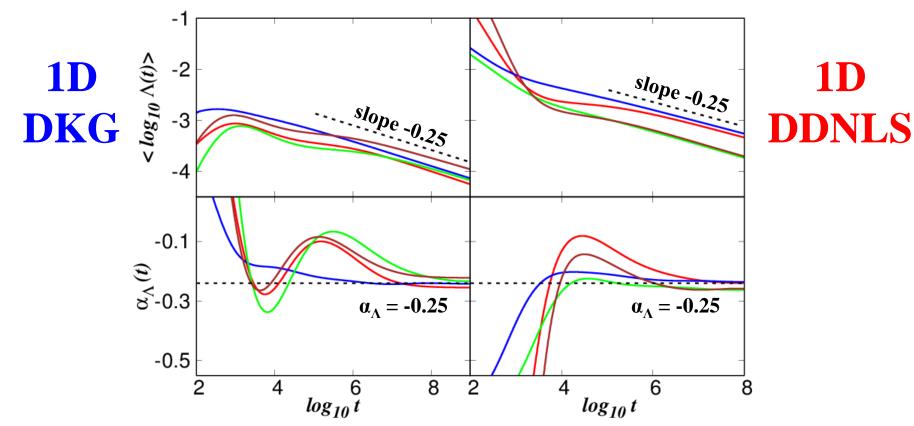


ABC² τ=0.005 SS² τ=0.02 DOP853 δ =10⁻¹⁶ SIFT² τ=0.05

E_r: relative energy error S_r: relative norm error T_c: CPU time (sec)

S. et al., Phys. Lett. A (2014)

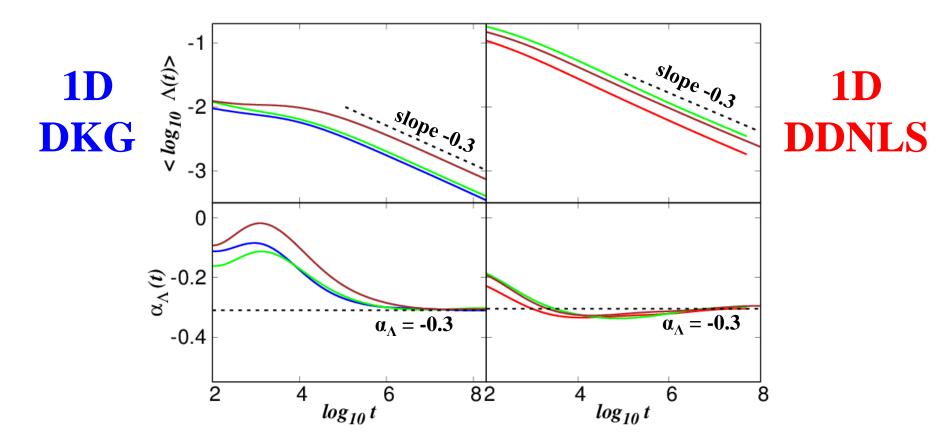
Weak Chaos: 1D DKG and 1D DDNLS



Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)]

Block excitation (L=37 sites) H_{1K} =0.37, W=3Block excitation (L=21 sites) β =0.04, W=4Single site excitation H_{1K} =0.4, W=4Single site excitation β =1, W=4Block excitation (L=21 sites) H_{1K} =0.21, W=4Single site excitation β =0.6, W=3Block excitation (L=13 sites) H_{1K} =0.26, W=5Block excitation (L=21 sites) β =0.03, W=31D DKG model also studied in S. et al., PRL (2013)

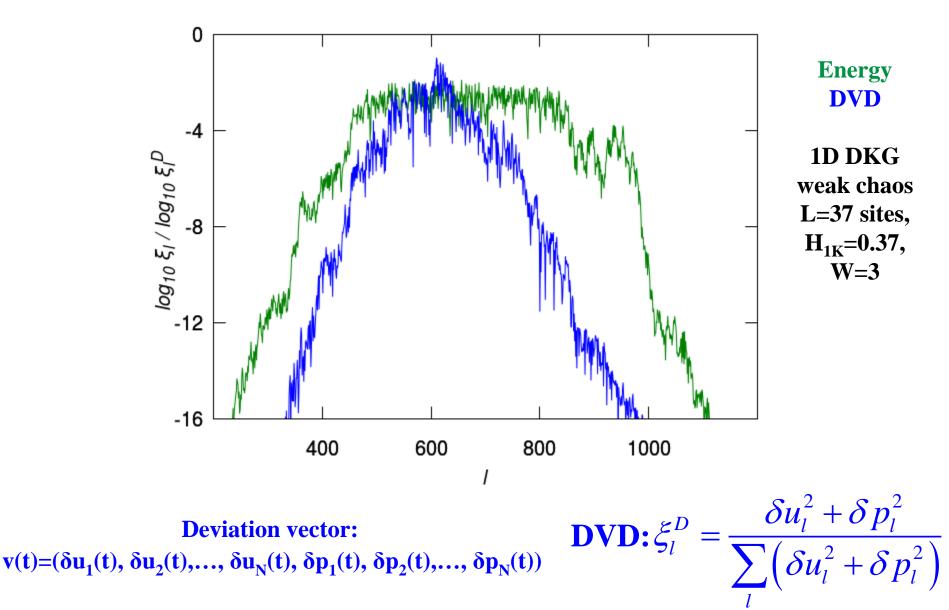
Strong Chaos: 1D DKG and 1D DDNLS

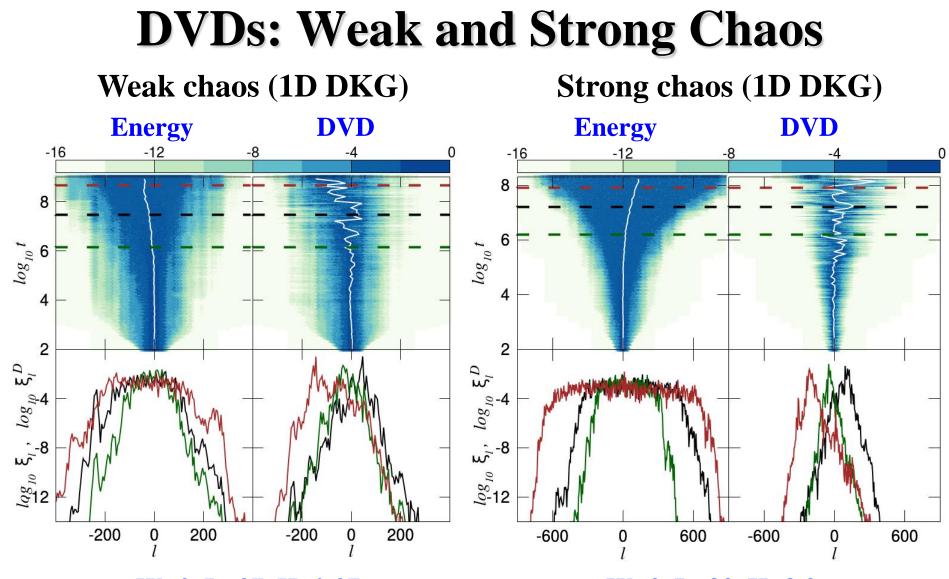


Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)]

Block excitation (L=83 sites) H_{1K} =0.83, W=2 Block excitation (L=21 sites) β=0.62, W=3.5 Block excitation (L=37 sites) H_{1K} =0.37, W=3 Block excitation (L=21 sites) β=0.5, W=3 Block excitation (L=83 sites) H_{1K} =0.83, W=3 Block excitation (L=21 sites) β=0.72, W=3.5

Deviation Vector Distributions (DVDs)





W=3, L=37, H=0.37

W=3, L=83, H=8.3

Chaotic hot spots meander through the system, supporting the homogeneity of chaos inside the wave packet.

Frequency Map Analysis (FMA)

Compute the fundamental frequencies, f_1 and f_2 , of an observable related to the evolution of an orbit in two successive time windows of the same length, and check whether or not these frequencies change in time [Laskar, Icarus (1990) – Laskar et al., Physica D (1992) – Laskar, Physica D (1993) – Robutel & Laskar, Icarus (2000)].

Regular motion: The computed frequencies do not vary in time Chaotic motion: The computed frequencies vary in time

For every lattice site *l* we compute the fundamental frequencies f_{1l} and f_{2l} for time windows of length $T = 6 \cdot 10^5$ time units and evaluate the relative change of these two frequencies:

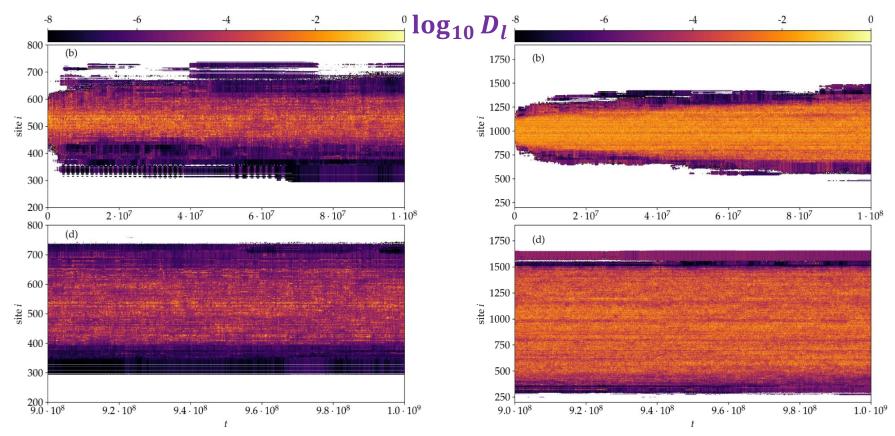
$$D_{l} = \left| \frac{f_{2l} - f_{1l}}{f_{1l}} \right|$$

Regular motion: small *D*_{*l*} **values Chaotic motion: large** *D*_{*l*} **values**

FMA: Weak and Strong Chaos

Weak chaos L=1, H=0.4, W=4, N=999

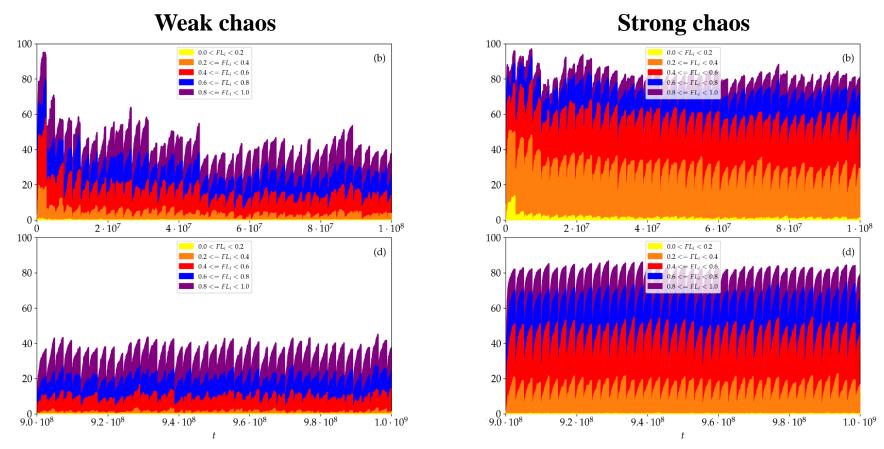
Strong chaos L=21, H=4.2, W=4, N=3499



Chaotic behavior appears at the central regions of the wave packet, where the energy density is relatively large. The chaotic component of the wave packet is more extended in the strong chaos case [S. et al., IJBC (2022)]

Frequency Locking (FL)

Accumulated percentages P_{FL} of sites with values in a particular FL range



The fraction of sites behaving chaotically is much larger in the strong chaos regime.

The percentage of strongly chaotic sites (having $FL_l < 0.4$) is about 5 times larger for strong chaos.

For both spreading regimes, the fraction of highly chaotic oscillators ($FL_l < 0.4$) decreases in time, although the percentage of chaotic sites remains practically constant.

The Generalized Alignment Index (GALI)

In the case of an N degree of freedom Hamiltonian system we follow the evolution of k deviation vectors with $2 \le k \le 2N$, and define [S. et al., Physica D, (2007)] the Generalized Alignment Index (GALI) of order k :

 $GALI_{k}(t) = \|\widehat{v}_{1}(t) \wedge \widehat{v}_{2}(t) \wedge \dots \wedge \widehat{v}_{k}(t)\|$

where $\hat{v}_{1}(t) = \frac{v_{1}(t)}{\|v_{1}(t)\|}.$

Chaotic motion: $GALI_k(t) \propto e^{-[(\lambda_1 - \lambda_2) + (\lambda_1 - \lambda_3) + ... + (\lambda_1 - \lambda_k)]t}$ with $\lambda_1, \lambda_2, ..., \lambda_k$ being the first k largest Lyapunov exponents.

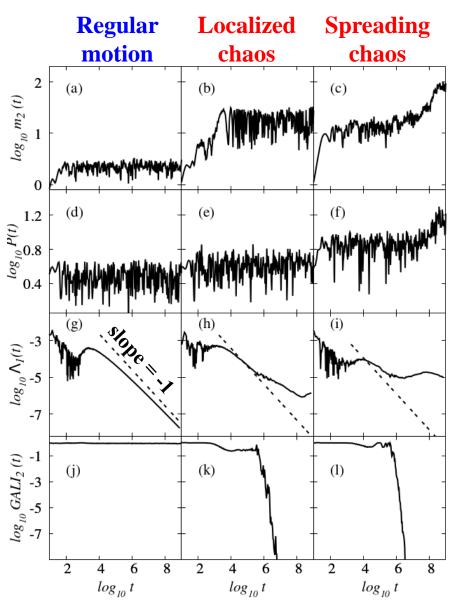
Regular motion: When the motion occurs on an N-dimensional torus [S. et al., Eur. Phys. J. Sp. Top. (2008)]:

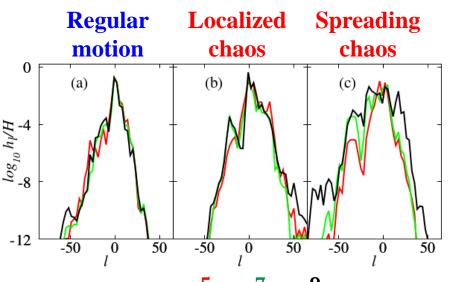
$GALI_k(t) \propto \text{constant, if } 2 \leq k \leq N$

Here we consider GALI₂ (k=2) which is equivalent to the Smaller Alignment Index (SALI) [S, J. Phys A (2001)].

Regular vs. chaotic (localized or spreading) motion

Different disorder realizations can exhibit different behaviors.

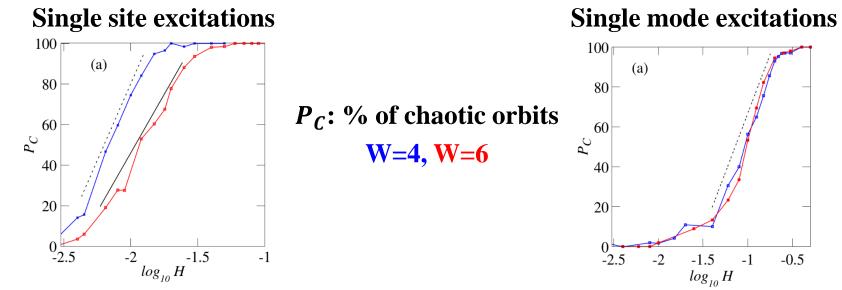




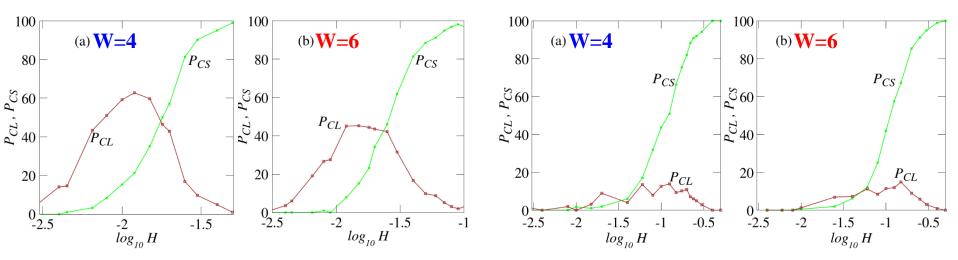
t = 10⁵, 10⁷, 10⁹ Single site excitations, L=1, for W=6, H=0.02 [Senyange & S., Physica D (2022)].

The GALI₂ can identify chaos much more clearly than the MLE.

Decreasing nonlinearity



 P_{CL} : % of localized chaos P_{CS} : % of spreading chaos



Energy thresholds for transition to regular motion and to spreading chaos are lower for single site excitations which permit mode interactions [Senyange & S., Physica D (2022)].

$$\frac{\text{The 2D DKG model}}{H_{2K}} = \sum_{l,m} \left\{ \frac{p_{l,m}^2}{2} + \frac{\tilde{\varepsilon}_{l,m}}{2} u_{l,m}^2 + \frac{u_{l,m}^4}{4} + \frac{1}{2W} \left[\left(u_{l,m+1} - u_{l,m} \right)^2 + \left(u_{l+1,m} - u_{l,m} \right)^2 \right] \right\}$$

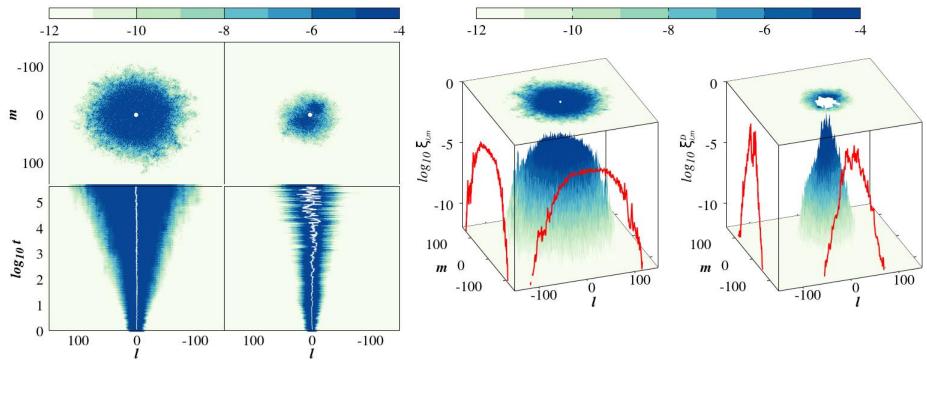
Again we have fixed boundary conditions and $\tilde{\varepsilon}_{l,m}$ are chosen uniformly in $\left|\frac{1}{2},\frac{1}{2}\right|$. The 2D DDNLS system

$$H_{2D} = \sum_{l,m} \left\{ \frac{\varepsilon_{l,m}}{2} \left(u_{l,m}^2 + p_{l,m}^2 \right) + \frac{\beta}{8} \left(u_{l,m}^2 + p_{l,m}^2 \right)^2 - \left(u_{l,m+1} u_{l,m} + u_{l+1,m} u_{l,m} + p_{l,m+1} p_{l,m} + p_{l+1,m} p_{l,m} \right) \right\}$$

Again ε_l are chosen uniformly from $\left[-\frac{W}{2}, \frac{W}{2}\right]$ and β is the nonlinear parameter. Conserved quantities: The energy H_{2D} and the norm $S = \sum_{l,m} \frac{u_{l,m}^2 + p_{l,m}^2}{2}$

2D: Deviation Vector Distributions (DVDs)

2D DDNLS: strong chaos L=15, W=12, β =0.425, s_{1,m}=1, H_{2D}=1.32



Norm DVD Norm DVD

Dimension-independent scaling between chaoticity and spreading

 $m_2 \propto t^{a_m}$

Second moment: Theoretical predictions verified by numerical computations

α_{Λ}	Weak	Strong
1 D	-0.25	-0.30
2 D	-0.37	-0.46

 $\Lambda \propto t^{\alpha_{\Lambda}}$ Finite time mLCE: Numerical computations

 $\alpha_{\rm m}$

1D

2D

Weak

1/3

1/5

Strong

1/2

1/3

For 1D and 2D systems there exists a uniform *scaling between the wave packet's spreading and its degree of chaoticity* indicating that nonlinear interactions of the same nature are responsible for the chaotic wave-packet spreading in both cases.

Weak chaos $\frac{A(t)}{m_2(t)}\Big|_{1D} = \frac{A(t)}{m_2(t)}\Big|_{2D}$ Strong chaos $t^{-0.58} \approx t^{-0.57}$ $t^{-0.80} \approx t^{-0.79}$

References

- Flach, Krimer, S. (2009) PRL, 102, 024101 •
- S., Krimer, Komineas, Flach (2009) PRE, 79, 056211 •
- S., Flach (2010) PRE, 82, 016208 •
- Laptyeva, Bodyfelt, Krimer, S., Flach (2010) EPL, 91, 30001 ٠
- Bodyfelt, Laptyeva, S., Krimer, Flach (2011) PRE, 84, 016205 ٠
- Bodyfelt, Laptyeva, Gligoric, S., Krimer, Flach (2011) IJBC, 21, 2107 •
- S., Gkolias, Flach (2013) PRL, 111, 064101 •
- Tieleman, S., Lazarides (2014) EPL, 105, 20001 •
- Antonopoulos, Bountis, S., Drossos (2014) Chaos, 24, 024405 ٠
- Antonopoulos, S., Bountis, Flach (2017) Chaos Sol. Fract., 104, 129 ٠
- Senyange, Many Manda, S. (2018) PRE, 98, 052229 •
- Many Manda, Senvange, S. (2020) PRE, 101, 032206 ٠
- Senvange, S. (2022) Physica D, 432, 133154 •
- S., Gerlach, Flach (2022) Int. J. Bifurc. Chaos, 32, 2250074 •
- S., Gerlach (2010) PRE, 82, 036704 •
- Gerlach, S. (2011) Discr. Cont. Dyn. Sys.-Supp., 2011, 475 •
- Gerlach, Eggl, S. (2012) IJBC, 22, 1250216 •
- multidimensional Hamiltonian systems S., Gerlach, Bodyfelt, Papamikos, Eggl (2014) Phys. Lett. A, 378, 1809 •
- Gerlach, Meichsner, S. (2016) Eur. Phys. J. Sp. Top., 225, 1103 ٠
- Senyange, S. (2018) Eur. Phys. J. Sp. Top., 227, 625 ٠
- Danieli, Many Manda, Mithun, S. (2019) MinE, 1, 447 •
- S. (2001) J. Phys. A, 34, 10029 •
- S., Bountis, Antonopoulos (2007) Physica D, 231, 30 •
- S., Bountis, Antonopoulos (2008) Eur. Phys. J. Sp. Top., 165, 5 ٠
- S. (2010) Lect. Notes Phys., 790, 63 •
- S., Manos (2016) Lect. Notes Phys., 915, 129 •

Chaos detection techniques

Numerical integration of

Dynamics of disordered lattices